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LElTER TO THE EDITOR 

Topology of non-singular textures of superfluid 'He 

D Bailin? and A Love4 
t School of Mathematical and Physical Sciences, University of Sussex, Brighton BN1 9QH 
UK 
$ Department of Physics, Bedford College, University of London, Regent's Park, London 
NW1 UK 

Received 23 June 1978 

Abstract. The topological classification of non-singular textures of superfluid 3He is 
discussed using relative homotopy groups. 

Topological homotopy group methods have been introduced to classify point and line 
singularities in superfluid 'He by Toulouse and Kleman (1976) and Volovik and Mineev 
(1977a, b). In the case of line singularities, the idea is to discover the topologically 
inequivalent mappings from a circle encircling the singular line to order parameter 
space. If the superfluid is contained in a cylindrical vessel one might imagine instead 
mapping a cross section of the cylinder into order parameter space, rather than a single 
circle within that cross section. This might provide a more complete classification of 
non-singular textures though, of course, it would not make sense for singular textures, 
because the mapping would be discontinuous on the central singular line. It is this 
question that we discuss. 

In general, let the space of order parameters be R. The interior of the disc 
representing the cross section of the cylindrical container is mapped into R. If there are 
boundary conditions, the boundary of the disc will be mapped into some subspace A of 
R. Usually, the boundary of the disc will be mapped into some specific class of curves in 
A. For example, if the boundary conditions are 1 = 6 (the unit radial vector in 
cylindrical polar coordinates) then A is formed by restricting the 1 vector to be 
perpendicular to the axis of the cylindrical container. However, at the end of the day, 
we may further restrict attention to curves in A with unit winding for 1 around the 
boundary. 

We proceed by studying the relative homotopy group 7r~(R, A). (See, for example, 
Steenrod 195 1 .) At the end we restrict attention to those elements of 7r2(R, A) which 
match the full boundary conditions. Information about the relative homotopy group 
may be obtained from the exact sequence (in which the image of one homomorphism is 
the kernel of the next) 

B 6 

d A )  4 vz(R) + r 2 ( R  A )  + r i (R)  (1) 
where a, p and 6 are induced by inclusion mappings, and y by a boundary mapping. 
Because of the exactness of the sequence 

y7rz(R, A) = ker 6. (2) 
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Thus all elements of rz(R, A )  have boundaries associated with the identity element of 
rl (R) .  This ensures that we are dealing with non-singular textures. 

In the absence of boundary conditions, A = R, and the mappings a and 8 are 
identity mappings. The exactness of the homotopy sequence then leads to 

rz (R,  R)=O. (3 1 
Thus without boundary conditions nothing can be said about non-singular textures 
other than that they correspond to the identity of r l (R) .  We therefore restrict attention 
to cases where boundary conditions are to be applied. 

If r z ( R )  = 0, then 

rz(RI A ) =  Y ~ z ( R ,  A)=  (4 1 
and no more can be learned about non-singular textures by considering r@, A )  than 
can be learned by considering r l (A) ,  i.e. by considering the texture on the boundary. 

If r 2 ( R )  # 0, then two cases of particular interest arise. The first is when m ( A )  = 0. 
This will often occur because the boundary conditions on a cylinder may spoil spherical 
symmetry. In this case, ker p = 0, and the homotopy sequence leads to 

m ( R ,  A)/ rz (R)=  ker S. (5 ) 

Consequently, more can be learned from mapping the complete disc into order 
parameter space than can be learned from mapping the boundary curve, i.e. from 
r 2 ( R ,  A )  than from ker S. 

A physical example of this case is the (dipole-locked) B phase in cylinders of radius 
at least 1 cm (so that the boundary free energy is greater than the bending free energy 
and the boundary conditions may be applied). Apart from a phase factor which is 
uninteresting for our present purposes, the order parameter space R is a space of 
three-dimensional unit vectors n. Thus, 

R = S 2  (6) 
(Volovik and Mineev 1977a). 

of the cylinder, so 
The boundary condition n = (i restricts n to be in a space perpendicular to the axis 

A=S’ (7 1 
and the exact sequence of equation (1) leads to 

Q(R, A )  = Z + Z .  (8) 
It is easy to see that the two integers correspond to mappings where the whole disc is 

mapped m times on to the northern hemisphere of the sphere S 2 ,  and n times on to the 
southern hemisphere of the sphere. Since the exact boundary condition is n = 8, the 
mappings of physical interest are those for which m and n differ by one. 

Simple examples may be obtained by first continuously deforming the disc to a 
hemisphere. We take coordinate axes with the z axis through the north pole of the 
hemisphere and the x and y axes in the plane of its base. Our examples take their 
simplest forms in terms of spherical polar coordinates ( O f ,  4’) based on the y axis rather 
than the usual spherical polars (6,q5) based on the z axis. 

Then the surface of the hemisphere may be written as 

r = 9  cos O’+sin ef ( f  sin i$f+.$ cos q 5 f )  (9) 



letter to the Editor L221 

with 
o s  8 ’ s  r,  O S @ S T ,  

n = y  ̂ cos @‘+sin 8’[2 sin(2N + l)fp,’+f cos(2N + 1)#’]. 

We define the mappings to the sphere S2 by 

(10) 

As the hemisphere is covered once the northern hemisphere of the sphere is covered 
N + 1 times and the southern hemisphere N times. The western half of the boundary of 
the hemisphere is mapped on to the western half of the equator of the sphere, and 
similarly for the eastern half. In this way the boundary condition n = fi is satisfied. In 
terms of the cylindrical polar coordinates ( p ,  a) defining position on the disc from which 
the hemisphere was obtained by deformation, we may take 

(1 1) P 
R 

cos 8’ = - sin @ 

and 
p cos @ 

J(R’-P’ sin2 a)’ cos fp’ = 

where R is the radius of the cylindrical container. The simplest example, N = 0 is 
2 

n = 2 J (I - 5) + 8- P 
R 

and resembles the Mermin and Ho texture for the A phase (Mermin and Ho 1976). 
There are, of course, topologically inequivalent textures in which the roles of the 
northern and southern hemispheres are interchanged (2 -* -2). 

Another example of this type is the academic case of (metastable) dipole-free 
’He-A1 in zero magnetic field. Then R = (SO3 x S03)/S1 and 7r2(R)= 2 (Bailin and 
Love 1978a); but 1 = fi gives A = S’ x SO3, so that 7r2(A) = 0. It follows that the textures 
satisfying the exact boundary condition are again labelled by an integer. 

The other case of physical interest with 7r2(R) # 0 is m(A) = a@). This can arise 
when the boundary conditions do not couple to the degrees of freedom which can 
produce point singularities. Then, the mapping a in equation (1) is the identity 
mapping, and the exact sequence leads to 

r 2 ( R ,  A) = ker S. (14) 
Thus, all the information about the texture is already contained in the boundary texture. 

cm provides a good example, 
because it is the d vector that can produce point singularities and the 1 vector that 
couples to the boundary conditions. From Bailin and Love 1978b, examples of 
elements of r l (A )  that belong to ker S are 

1 

The A phase in cylinders of radius much less than 

A=-(&+iif)exp(im4) 4 
d =f cos nfp +$ sin nd 

2m - 2 = O(mod 4). 
with 

m = 1 , 3 , 5  etc are all inequivalent textures which are however non-singular. 



L222 Letter to the Editor 

Our arguments may also be applied in spherical containers by studying 74R, A )  
rather than w2(R, A) .pr  However, for the cases of interest for superftuid 3He the boundary 
conditions are that n or 1 is normal to the surface of the spherical container, and in 
consequence A = R. Since .rr3(R, R )  = 0, nothing new is learned by considering the 
relative homotopy group (even when non-singular textures are allowed by the boun- 
dary conditions). 

We are grateful to Dr M Dunwoody for helpful discussions. This research was 
supported in part by the Science Research Council under grant number GR/A/43087. 

Note added in proof. Since completing this work we have received a Landau Institute 
preprint by V P Mineev and G E Volovik, entitled ‘Planar and linear solitons in 
superfluid 3He’, which contains some similar ideas but different applications. 
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